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Abstract

Background Anterolateral ligament (ALL) reconstruction

as an adjunct to anterior cruciate ligament (ACL) recon-

struction remains a subject of clinical debate. This

uncertainty may be driven in part by a lack of knowledge

regarding where, within the range of knee motion, the ALL

begins to carry force (engages).

Questions/purposes (1) Does the ALL engage in the

ACL-intact knee; and (2) where within the range of ante-

rior tibial translation occurring in the ACL-sectioned knee

does the ALL engage?

Methods A robotic manipulator was used to measure

anterior tibial translation, ACL forces, and ALL forces in

10 fresh-frozen cadaveric knees (10 donors; mean age, 41

± 16 years; range, 20-64 years; eight male) in response to

applied multiplanar torques. The engagement point of the

ALL was defined as the anterior tibial translation at which

the ALL began to carry at least 15% of the force carried by

the native ACL; a threshold of 15% minimized the sensi-

tivity of the engagement point of the ALL. This

engagement point was compared with the maximum ante-

rior tibial translation permitted in the ACL-intact condition

using a paired Wilcoxon signed-rank test (p \ 0.05).

Normality of each outcome measure was confirmed using

Kolmogorov-Smirnov tests (p\ 0.05).

Results The ALL engaged in five and four of 10 ACL-

intact knees in response to multiplanar torques at 15� and
30� of flexion, respectively. Among the nine of 10 knees in

which the ALL engaged with the ACL sectioned, the ACL-

intact motion limit, and ALL engagement point, respec-

tively, averaged 1.5 ± 1.1 mm and 5.4 ± 4.1 mm at 15� of
flexion and 2.0 ± 1.3 mm and 5.7 ± 2.7 mm at 30� of

flexion. Thus, the ALL engaged 3.8 ± 3.1 mm (95%

confidence interval [CI], 1.4-6.3 mm; p = 0.027) and 3.7 ±

2.4 mm (95% CI, 2.1-5.3 mm; p = 0.008) beyond the

maximum anterior tibial translation of the ACL-intact knee

at 15� and 30� of flexion, respectively.
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Conclusions In this in vitro, cadaveric study, the ALL

engaged in up to half of the ACL-intact knees. In the ACL-

sectioned knees, the ALL engaged beyond the ACL-intact

limit of anterior subluxation on average in response to

multiplanar torques, albeit with variability that likely

reflects interspecimen heterogeneity in ALL anatomy.

Clinical Relevance The findings suggest that surgical

variables such as the joint position and tension at which

lateral extraarticular grafts and tenodeses are fixed might

be able to be tuned to control where within the range of

knee motion the graft tissue is engaged to restrain joint

motion on a patient-specific basis.

Introduction

Anterior cruciate ligament (ACL) rupture can be associated

with concomitant injury to the portion of the anterolateral

capsule that has been described as the anterolateral liga-

ment (ALL), a secondary stabilizing ligament of the knee

[2, 8, 19, 27, 32]. Therefore, the biomechanical role of the

ALL has been studied to discern its contribution to knee

function in addition to providing guidance and rationale for

its reconstruction [4, 10, 16, 27, 31–33]. However, previous

biomechanical approaches do not consider where, within

the ROM of the tibiofemoral joint, the ALL begins to carry

force and restrain motion (that is, where it engages). For

example, the ALL is known to carry appreciable force

(approximately 50 N on average) at the peak load applied

to the ACL-sectioned knee [32]. Studies also report that

sectioning both the ALL and the ACL results in more laxity

in response to multiplanar torques than sectioning the ACL

alone [27, 32, 35]. Together, these findings suggest that the

ALL is an important restraint in the setting of ACL defi-

ciency, but it remains unclear whether the ALL begins to

carry appreciable force within the ROM of the intact knee.

Knowing if and where within the tibiofemoral ROM the

ALL engages on a patient-specific basis is important

because it could inform more personalized surgical

guidelines to mitigate tibiofemoral instability and restore

function. For example, in the ACL-deficient knee, if the

ALL engages closer to the ROM of the intact knee in

response to the same applied loads, it may play a critical

role in restraining knee motions. Therefore, it might be a

candidate for surgical reconstruction or augmentation.

Conversely, if the ALL only engages beyond the ROM of

the intact knee, it may play a less critical role in main-

taining the joint within its intact ROM; therefore,

augmenting it through extraarticular tenodesis or anatomic

ALL reconstruction could overconstrain the knee or cause

the graft to bear supraphysiological loads [9, 23, 28, 29]. In

addition to determining whether these procedures should

be conducted, characterizing ALL engagement on a

patient-specific basis could inform surgical decisions such

as the knee flexion angle, axial tibial rotation, and tension

at which the graft should be fixed [16].

The objective of this study was to characterize the

engagement of the ALL in response to multiplanar tor-

ques, a loading scenario known to generate anterior

subluxation of the tibia [5, 12]. To this end, we asked (1)

does the ALL engage in the ACL-intact knee; and (2)

where within the range of anterior tibial translation

occurring in the ACL-sectioned knee does the ALL

engage? We hypothesized that the ALL would engage in

a minority of knees with the ACL intact. Moreover, we

hypothesized that, in the ACL-sectioned knee, the ALL

would engage beyond the range of anterior tibial trans-

lation of the ACL-intact knee.

Materials and Methods

Ten fresh-frozen human cadaveric knees from 10 different

donors were obtained from a nonprofit anatomic donation

organization for testing (mean age, 41 ± 16 years; range,

20-64 years; eight male). Medial parapatellar arthrotomies,

CT scans, and reviews of the medical histories of each knee

were performed to confirm that the specimens were unin-

jured and free of malalignment, chondral damage, prior

surgery, osteophytes, and other osseous abnormalities. The

femur and tibia were fixed to a six degrees-of-freedom

robotic manipulator (absolute position accuracy:± 0.3 mm;

payload: 165 kg) (ZX165U; Kawasaki Robotics, Wixom,

MI, USA) that was equipped with a universal force

(F)/moment (T) sensor (resolution: Fx = Fy = 0.13 N, Fz =

0.25 N, Tx = Ty = Tz = 0.008 Nm; limits: Fx = Fy = 1500 N,

Fz = 3750 N, Tx = Ty = Tz = 240 Nm) (Theta; ATI, Apex,

NC, USA) [11]. A subset of these biomechanical data was

published in a previous study of the ALL by Thein et al.

[32], but with this work, we present a novel means of

characterizing ligament function that quantifies where

within the ROM the ALL engages in the ACL-intact and -

sectioned knee. Details on specimen preparation, definition

of the anatomic coordinate system, and joint precondition-

ing can be found in our previous work [11, 32].

After preconditioning, multiplanar valgus and internal

rotation torques were applied to the tibia. These torques,

when applied in combination, generate anterior translation

of the tibia relative to the femur [12, 14, 22], which is a

hallmark characteristic of giving-way events after ACL

rupture [6, 18]. With the knee starting from 15� and 30� of
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passive flexion, valgus torque was increased to 8 Nm in the

following increments: 0.8, 2, 4, 6, 7, and 8 Nm. Then, with

valgus torque held constant at 8 Nm, internal rotation

torque was increased to 4 Nm in the following increments:

0.4, 0.8, 1.2, 2, 3, and 4 Nm. These applied torques are

within a range known to generate anterior subluxation of

the tibia in the ACL-deficient knee [22, 27, 29]. The study

focused on 15� and 30� flexion because both the ACL and

the ALL carry force at these angles [14, 32], and these

flexion angles are within a range where clinical and func-

tional pivoting events occur [6, 17, 18]. With the ACL

intact, changes in the position and orientation of the tibia in

response to the applied loads were determined under load

control. The resultant force carried by the ACL throughout

the ACL-intact kinematic trajectory was then determined

using the principle of superposition [34]. This was done by

sectioning the ACL and then repeating the kinematic path

of the ACL-intact knee while measuring the reaction for-

ces. Subsequently, multiplanar torques were applied to the

knee under load control to determine the kinematics of the

ACL-sectioned knee.

The protocol used to identify and section theALLhas been

described previously: the distal insertion was identified by

applying varus and internal rotation moments while flexing

the knee from 60� to 90�, and the proximal insertion either

fanned around or blended in with the femoral insertion of the

lateral collateral ligament (Fig. 1) [3, 4, 32]. The resultant

forces carried by the ALL throughout the ACL-intact and -

sectioned kinematic trajectories were then determined using

the principle of superposition [34]. This was done by sec-

tioning the ALL from its insertions and the adjacent capsule

and then moving the knee through the kinematic paths of the

ACL-intact and -sectioned condition again while measuring

the reaction forces. The anterolateral capsule carries both

transverse and axial forces [7]; however, only the net force

carried across the tibiofemoral joint by the ALL was mea-

sured because component force data were not necessary to

answer the research question of where within the range of

anterior tibial translation the tissue began to carry force.

In each condition, the ALL was considered to have

engaged when it carried 15% of the resultant force borne

by the ACL in the same knee in response to the applied

multiplanar torques. In other words, the force borne by the

ACL, a primary stabilizer against multiplanar torques,

served as a reference from which ALL engagement could

be defined in each knee. The force carried by the ACL in

response to multiplanar torques, respectively, averaged 100

± 27 N and 104 ± 36 N at 15� and 30� of flexion. The

threshold of 15% of the ACL force used to identify ALL

engagement, respectively, averaged 15 ± 4 N and 16 ± 5 N

at 15� and 30� of flexion. Variations in the engagement

point of the ALL were not related to variations in this force

threshold (adjusted r2 B 0.14; b = 0.52 ± 1.04 at 15�, 0.11

± 0.54 at 30�; p C 0.17). The threshold of 15% was chosen

for the following reasons. As the threshold was increased

from 0% to 15%, the engagement point of the ALL became

less sensitive to changes in the threshold. However,

thresholds higher than 15% began to exceed the maximum

force carried by the ALL in multiple knees, decreasing the

number of ALLs that engaged in the ACL-sectioned con-

dition (Supplemental Fig. 1 [Supplemental materials are

available with the online version of CORR1.]). In the

ACL-sectioned condition, the engagement point of the

ALL was the focus of this work (rather than the number of

ALLs that engaged); thus, a threshold that optimized the

number of data points while minimizing sensitivity was

most appropriate for this study.

The AP position where ALLs met the force threshold of

15% peak ACL force (that is, engaged) in the ACL-sec-

tioned knee was identified as its ‘‘engagement point,’’

measured in millimeters (Fig. 2). Ligament forces as a

function of anterior tibial translation were targeted because

anterior subluxation is the hallmark feature of giving-way

events that occur in the ACL-deficient knee; it is also the

direction of greatest increase in motion in response to

multiplanar torques as a result of sectioning the ACL

Fig. 1 The dissected ALL is outlined with purple ink, and its tibial

insertion is marked with a black star. The tibial insertion of the lateral

collateral ligament is marked with a black triangle.

Variable Engagement of the ALL
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[1, 12, 14, 15]. The maximum anterior tibial translations of

the ACL-intact and -sectioned knee were determined rel-

ative to the initial position of the knee, which was

identified from the previously determined flexion path. The

engagement point of each ALL in the ACL-sectioned

condition was then compared with the maximum anterior

tibial translation of the ACL-intact and -sectioned knee (ie,

ACL-intact and -sectioned motion limits) (Fig. 2). Addi-

tionally, ALL engagement points were normalized to the

increase in maximum, anterior tibial translation between

the ACL-intact and -sectioned knee (the ACL-intact limit

was 0% and the ACL-sectioned limit was 100%). This

permitted comparison of ALL engagement points that were

independent of interspecimen variability in ACL-intact and

-sectioned limits of anterior tibial translation.

To address the first research question, a count of ALLs

that engaged in the ACL-intact knee was reported. To

address the second research question, the engagement point

of the ALL in the ACL-sectioned knee was compared with

the ACL-intact motion limit using a paired, nonparametric

Wilcoxon signed-rank test (p \ 0.05). Although Kol-

mogorov-Smirnov tests confirmed that the data were

normally distributed (p\ 0.05), more conservative, non-

parametric statistical analyses were used due to the low

sample size.

Results

The ALL engaged in the ACL-intact condition in five of 10

knees at 15� of flexion and in four of 10 knees at 30� of

flexion in response to the combined multiplanar torques.

In the nine (of 10) ACL-sectioned knees in which the

ALL engaged, at 15� flexion, the ACL-intact motion limit

and the engagement point of the ALL averaged 1.5 ± 1.1

mm and 5.4 ± 4.1 mm, respectively (Fig. 3); thus, the ALL

engaged 3.8 ± 3.1 mm beyond the ACL-intact motion limit

on average (95% confidence interval [CI], 1.4-6.3 mm) (p =

0.027) (Fig. 3). At 30� flexion, the ACL-intact motion limit

and the engagement point of the ALL averaged 2.0 ± 1.3

mm and 5.7 ± 2.7 mm, respectively (Fig. 4); thus, the ALL

engaged 3.7 ± 2.4 mm beyond the ACL-intact motion limit

on average (95% CI, 2.1-5.3 mm; p = 0.008; Fig. 4).

Normalized to the increase in maximum anterior tibial

translation between the ACL-intact and -sectioned condi-

tions, the ALL engaged at 61% ± 48% (95% CI, 25%-

89%) and 56% ± 30% (95% CI, 34%-74%) of this range at

15� and 30� of flexion, respectively (Fig. 5).

Discussion

Lateral, extraarticular augmentation as an adjunct to ACL

reconstruction remains a subject of clinical debate [9, 13].

It is known that the ALL bears appreciable force in

response to multiplanar torques applied to the ACL-

Fig. 2 This illustration showing resultant forces in the ALL and ACL

as a function of anterior tibial translation in response to combined

valgus and internal rotation torques. Dashed, vertical gray lines

indicate the anterior limits of motion in the ACL-intact and -sectioned

conditions as well as the engagement point of the ALL in the ACL-

sectioned condition. The dashed, horizontal, gray line marks the

engagement threshold of the ALL (15% ACL force). In each knee, the

engagement point of the ALL, measured in millimeters, was

compared with the anterior motion limit of the ACL intact knee,

also measured in millimeters.

Fig. 3 At 15� of flexion, maximum anterior tibial translation of the

ACL-intact and -sectioned knee compared with the engagement point

of the ALL after the ACL was sectioned. Thick, black lines and thin,

gray lines represent means and medians, respectively, and boxes span

interquartile ranges. *p\ 0.05.

Fig. 4 At 30� of flexion, maximum anterior tibial translation of the

ACL-intact and -sectioned knee compared with the engagement point

of the ALL after the ACL was sectioned. Thick, black lines and thin,

gray lines, respectively, represent means and medians, and boxes span

interquartile ranges. Outliers are indicated with black circles. *p\
0.05.
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deficient knee [32]. However, our work expands on this

knowledge by considering where in the range of anterior

tibial translation the ALL begins to play a biomechanical

role in resisting multiplanar torques. In our cadaveric

study, we found that the ALL typically engages outside of

the ROM of the ACL-intact knee, albeit with a high degree

of variability. This novel framework for characterizing the

biomechanics of the ALL could lead to surgical guidelines

(such as fixation tension) for adjunctive, lateral augmen-

tation that achieves a desired engagement point on a

patient-specific basis.

This study has limitations. First is that cadaveric mate-

rial was used to answer our research question, which limits

our ability to transfer these findings to a clinical setting;

however, doing so was necessary for controlled measure-

ment of joint kinematics and ligament forces. Second,

variations in ALL engagement between specimens could

have been driven by variations in the force threshold used

to define ALL engagement. However, this was not the case

because linear regression analyses revealed no such rela-

tionship (p C 0.17). Third, our main finding that the ALL

engaged beyond the ACL-intact motion limit might be

sensitive to the percentage of ACL force used to define

ALL engagement. However, the sensitivity of the

engagement point was minimized by higher thresholds

(Supplemental Fig. 1). Moreover, thresholds above 15%

began to exceed the peak force carried by the ALL, pro-

hibiting calculation of an engagement point (Supplemental

Fig. 1). Fourth, cadavers were sectioned at the midshaft of

the femoral diaphysis and therefore did not include the

proximal insertions of the quadriceps, hamstrings, or ili-

otibial band (ITB). Even in this scenario, which minimized

the contribution of these structures and, thus, likely maxi-

mized the contribution of the ALL, the ALL engages

outside the envelope of motion of the native knee. There-

fore, inclusion of the ITB and dynamic stabilizers is not

likely to change our conclusions.

A fifth limitation is that interspecimen variability in the

engagement point of the ALL may have been driven by an

inconsistent sectioning protocol. However, in addition to

the 10 specimens included in this work, we collected data

from the contralateral limb of one of the donors (woman,

age 58 years); inclusion of either paired specimen yielded

an almost identical set of results (Supplemental Table 1

[Supplemental materials are available with the online

version of CORR1.]). Sixth is that there are other load

combinations that maximize anterior subluxation of the

tibia [20, 24, 25]. Nevertheless, the magnitude of anterior

subluxation in response to combined valgus and internal

rotation torques distinguished the variability in ALL

engagement points in the ACL-sectioned knee. Seventh is

that internal rotation of the tibia was not included in our

analysis; we did not focus on the internal rotation because

studies have shown that the increase in internal rotation

resulting from ACL sectioning is small, averaging

approximately 3� [15, 27, 32]. Finally, the ALL plays a

more important role at higher flexion angles than those

tested in this study [7, 24]. That said, we decided that it was

more useful to investigate the function of the ALL at 15�
and 30� of flexion, where pivoting events occur [6, 17, 18].

The frequency of ALL engagement in the ACL-intact

condition was greater than we had hypothesized; the ALL

engaged in up to half of the knees (five of 10) tested in this

study in response to multiplanar torques at 15� and 30� of
flexion. Although the ALL engages in some ACL-intact

knees, Thein et al. [32] reported that it does not subse-

quently build appreciable force, carrying an average of 15

N at the peak applied torques. We appreciate the apparent

contradiction that the ALL engaged in some ACL-intact

knees although it typically engaged outside of the native

range of anterior tibial translation after the ACL was sec-

tioned. This was likely because, with the ACL intact,

internal tibial rotation alone removed the slack in the ALL

in some knees without the anterior tibial subluxation that

occurs after sectioning the ACL. In this subset of speci-

mens, after the ACL was sectioned, the ALL engaged

within or near the ACL-intact motion limit. Sectioning the

ACL imparts small increases in internal tibial rotation

(approximately 3�) in response to multiplanar torques at

15� and 30� flexion [15, 27, 32]. Therefore, pathologic

anterior tibial translation is required in addition to internal

rotation to build appreciable force in the ALL at these

flexion angles as reported by Thein et al. (approximately 50

N, or approximately 50% of the peak ACL force on aver-

age) [32]. This reasoning explains why cadaveric

photographs from our work and others’ featuring a taut

ALL show the tibia subluxated anteriorly (Fig. 1) [26, 32].

In accordance with our second hypothesis, on average,

the ALL engaged about halfway through the range of

additional anterior tibial translation that occurs after

Fig. 5 Normalized engagement points of the ALL in response to

combined valgus and internal rotation torques are shown individually

for each knee that was tested. Light and dark gray diamonds represent

the normalized engagement point of the ALL in each knee at 15� and
30� of flexion, respectively. The engagement points are expressed as a

percentage of the difference between the ACL-intact and -sectioned

motion limits (dashed gray lines) in the same knee. A negative

percentage indicates engagement within the ACL-intact motion limit.

Variable Engagement of the ALL
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sectioning the ACL in response to multiplanar torques at

15� and 30� of flexion (Figs. 3, 4, 5). Thein et al. [32] have

shown that the ALL carries force at the peak applied

multiplanar torques in the ACL-sectioned knee; however,

our findings indicate that, on average, the ALL engages

only after the ACL-sectioned knee has subluxated

approximately 4 mm anteriorly. Thus, although the ALL

resists additional anterior subluxation from occurring after

the ACL is sectioned [27, 32], it usually does not prevent

the initial, pathologic anterior subluxation. However, there

was a wide range in the engagement point of the ALL

(Fig. 5), corroborating the interpersonal variability

observed in the stabilizing role of the lateral capsular tis-

sues in resisting multiplanar torques [21].

Surgical augmentation of the lateral, extraarticular tissue

as an adjunct to ACL reconstruction has been reintroduced

in an effort to restore rotational stability [30]. However, use

of these combined surgeries remains a subject of debate as

a result of variable outcomes as described in a recent meta-

analysis by Hewison et al. [9]. Knowledge of where in the

ROM of the knee the ALL engages in response to multi-

planar torques may help explain some of this variability.

Specifically, we found a subgroup of three knees in which

the ALL engages within 10% of the ACL-intact ROM in

the ACL-sectioned knee at 15� flexion (Fig. 5). In the

ACL-intact condition, these ALLs carried 36 ± 7 N. In

contrast, ALLs that engaged later in the ACL-sectioned

knee carried less force (12 ± 7 N) with the ACL intact. We

speculate that this inconsistent function may be driven by

interspecimen variability in the anatomy (eg, thickness and

isometry) of the ALL [4, 10, 26, 30]. This finding may be

relevant for identifying those ACL-injured patients who

rely more on this tissue and may therefore benefit from its

augmentation or reconstruction. Such a distinction may

prove to be important because augmentation of the

anterolateral capsule, although beneficial to some knees,

may overconstrain others, which may lead to long-term

joint degeneration [13, 23, 28, 29, 31].

In conclusion, in this in vitro, biomechanical study of 10

cadaveric specimens, we found that, in response to com-

bined valgus and internal rotation torques at 15� and 30� of
flexion, the ALL engaged in approximately half of the

ACL-intact knees. Furthermore, the average engagement

point of the ALL in the ACL-sectioned knee was beyond

the ACL-intact limit of anterior tibial translation. Thus, in

our cadaveric sample, on average, the ALL does not

restrain the knee within the range of anterior tibial trans-

lation of the ACL-intact knee in response to combined

torques. However, in a minority of ACL-sectioned knees,

the ALL engaged within or near the ACL-intact limit of

anterior motion and also engaged in the ACL-intact con-

dition. These findings are clinically relevant because they

suggest that surgical decisions such as the joint position and

tension at which lateral extraarticular grafts and tenodeses

are fixed could be tuned to control where within the ROM

of the knee the graft tissue is engaged on a patient-specific

basis. However, additional work is required to understand

the relationship between these surgical parameters and graft

engagement before this framework could be used to

establish more precise, personalized guidelines for surgical

augmentation of the lateral joint capsule.
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